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Abstract
faces is presented in this paper. In the proposed model, all the dynamic parameters are computed in a unified way for both non-defective

Based on dual Doo-Sabin subdivision and the corresponding parameterization, a modeling tech nique of deformable sur-

and defective subdivison matrices, and central differences are used to discretize the Lagrangian dynamics equation instead of backw ard dif-
ferences. Moreover, a local scheme is developed to solve the dynamics equation approximately, thus the order of the linear equation is re-

duced greatly. Therefore the proposed model is more efficient and faster than the existing dynamic models. It can be used for deformable

surface design, interactive surface editing, medical imaging and simulation.

Keywords:

Free-form surfaces, especially non-uniform ratio-
nal B-splines (NURBS), are widely used in computer
aided geometric design and computer-aided design/
manufacturing. However, usually a surface of arbi-
trary topology cannot be represented by a single
NURBS. Moreover it is very difficult to set the knot
spacings manipulate the control vertices or modify
the weights to meet some design requests using
NURBS. Consequently, subdivision surfaces appear
to uniformly model any complex surfaces of arbitrary
topology[ " However interactive methods for modi-
fying subdivision surfaces need to be developed fur-
ther. Attention has been paid to physics-based dy-
namic subdivision surfaces in recent yeard® 7, be-
cause dynamic subdivision surfaces allow users to edit
the shapes of limit surfaces by applying forces at the
desired locations of the control meshes which seems
very intuitive and natural just as modeling shapes in
clay.

Qin et al. introduced the “physical quantity” in-
to dynamic Catmull-Clark surfaces in 1998, which
were successfully applied to the visualization of medi-
cal data? . Tn 2000, Mandal et al. gave a finite-ele-
ment-method-based dynamic framework for subdivi-
sion surfaces and dealt with the modified butterfly and
Catmull-Clark schemed ? .
they computed the dynamic parameters, such as the
mass, damping and stiffness matrices, by subdividing

subdivision However,

deformable model subdivision surface dynamics Doo-Sabin surface.

(a) (b)

Fig. 1. Prmal and dual subdivision schemes (a) Primal scheme

(face spli); (b) dual scheme (vertex split).

the control mesh recursively, and obtained only the
approximate results. Using parameterizations for sub-
division surfaces of arbitrary topologies including Cat-
mull-Clark surfaces and Loop surfaced®”, Qin et al.
showed that it was desirable to evaluate all the dy-
namic parameters exactly without subdividing the

.45 .
control mesh recursively’ * 7. However, their method

is not applicable for general subdivision matrices.

In general. the existing subdivision schemes can
be classified into two types: primal and dual i. e.
face split and vertex split'"". As shown in Fig. 1, in
the former case;, N new faces are created for each N-
sided faces while in the latter case, new vertices are
created for each old vertex, one for each face contain-
ing the vertex. However, the subdivision schemes
mentioned above are all primal, thus it is desirable to
develop dy namic surface models based on dual subdi-

[8]

vision. Doo-Sabin scheme' ™, for instance, is a typi-
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cal dual subdivision scheme. Because the subdivision
matrix of Doo-Sabin scheme may be defective, in con-
trast to the non-defective cases discussed in previous
work, it is challenging to compute the dynamic pa-
rameters for physics-based Doo-Sabin surfaces. Re-
cently, Wang and Qin gave a precise evaluation
scheme for Doo-Sabin surfaces such that the values
and derivatives of Doo-Sabin surfaces can be computed
easily in any parameter positiond ” . Using this evalu-
ation scheme, we will present a novel deformable sur-
face model based on Doo-Sabin subdivision, and ex-
tend the dynamic subdivision surfaces to the dual set-

ting.
1 Uniform Doo-Sabin subdivision surfaces

The uniform Doo-Sabin surface is designed by
generalizing the uniform biquadratic B-spline surface
to meshes of arbitrary topology. The surface is de-
fined as the limit of the control mesh which becomes
finer and finer by being subdivided recursively. At
each step new vertices are introduced and new faces
(of type F» type E, and type V, respectively) are
created for each face, edge and vertex of the previous
polyhedron (see Fig. 2(a)). The well-known rules of
Doo-Sabin subdivision are given ad® (see Fig. 2
b))

pi= sz _i [3 + 2(‘0s ‘ ]p/,

4N

Fig. 2.
topology. (a) Subdividing an arbitrary mesh; (b) local structure

Doo-Sabin subdivison of control meshes of aitrary

for computing new vertices.

where N=3 is the number of the edges of the face
Pop1""PN—
of the new polyhedron will have valence 4, and the

1. After one subdivision step, each vertex

number of non-quadrilateral faces will remain con-
stant. In the refinement process, the extraordinary
points are at the centers of the N-sided faces with
N7#4. After one more subdivision step, all extraor-
dinary points are isolated. Thus, we generally assume
that all the extraordinary points are isolated in the
initial polyhedron so that all vertices have valence 4

and no two faces with N4 sides share a common

vertex .
N-1 N v
2 v 2 [y}
| 0/ ilnd A
AR % | &
v N+2 22} o @
d 2] -
{a) (®)

Fig. 3. Parametenzation for a surface patch. (a) Local structure

defining a patch; (b) infinite partition of the parameter region 1.

A Doo-Sabin surface is divided naturally into
many little surface patches”, which have a one-to-
one relationship with the vertices, in contrast to the
one-to-one relationship between the surface patches
and the polyhedral faces for primal subdivision sur-
faces. Each patch is defined by only those faces con-
taining the corresponding vertex, as shown in Fig. 3
(a). Note that the valence of each vertex equals 4 and
all the extraordinary points are isolated, then there
are three four-sided faces in the local structure and the

Obvi-

ously the surface patch reduces to a uniform bi-

fourth face is supposed to be an N-sided face.

quadratic B-spline surface when N is equal to 4. It is
shown in Ref. [ 9] that the surface patch can be pa-
rameterized as a function s(u, v), which is defined
on Q=[0, 1]X[0, 1] . In detail,

s"Cuy, ) =J Co  (usv) € Q

w here
C; = (po, p1, -
J = b ey XY

k
k: 17293, I’l:1,2, ]
where Xy= PAV, (2, V) is the eigenstructure of

the subdivision matrix 4, and b(u, v) are uniform

-y PNH4),

biquadratic B-spline basis functions. The formulae of
all matrices (A, 2, V, 4, Px), basic functions b (u,
v), subdomains & and transformations #, , Cu, v)
can be found in Ref.[9] . { ¥, k=1,2,3, n=1,2,
-} constitute a partition of £, as shown in Fig. 3
(b). Note that the subdivision matrix A is non-de-
fective for N<<4 but defective for N> 4, thus = may
be a Jordan canonical form, in contrast to the simple

diagonal matrices in the previous work. For any N,
we rewrite > as 2= A+ U, where

o 1 1 1 1 1 1 1 1
A— dlag[l, 29 2’ 16’ 89 8’ 47 4, [EXS ]

édlag(lo, >\19 >\29 ) >\N+4 )’
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If there are m vertices and d faces in the initial
control mesh, then the i-th limit surface patch can be
rewritten as

s; = JiG, = J RiCo,

w here C(')F: (po» pi1» **» pm—1) contains all m con-
trol vertices, and R;is an (N+5)X m picking ma-
trix (each row isfilled with zeros except for aone in a
certain column). Note that J only depends on the

valence N.

2 Deformable model based on Doo-Sabin
subdivision
2.1 Decomposition of forces in dy namics equation

If we regard the control vertices Co as a function
related to the time ¢ in a pure physical system, then
the Lagrangian dynamlcs equation is satisfied:

MC0+ DC0+ KCy =

where M, D and K are the mass dampmg and stiff-
ness matrices, respectively, and F) is the generalized
force vector. Let ' be the density of mass, ¥ be the
coefficient of damping, then the mass matrix and the
damping matrix are

M= ﬂw Jdudv, D= ﬂm Jdudv,

where J = ZJ*Ri .

i=1

From a thin-plate-under-ten-

sion energy model the stiffness matrix can be com-

puted byl ¢

K= JﬁanJTJu + andsd + Bi1d welu
=+ BlzJ;,er =+ BzzJ{Jw ddudv,

where @; and [ are the characteristic springiness co-
efficients.

Suppose that the surface is stable before being
deformed, i.e. the surface keeps still, then Co = 0

and Co = 0. Hence the dynamics equation becomes
KCy= F,. That is to say, there are initial forces F;
= KCy(0), called static forces, initially applied on
a stable initial
shape. The static forces are assumed to be constants,

the surface such that the surface has

only depending on the initial Doo-Sabin surface. On

the, other ‘hand.  in order to deform the surface, we

apply external forces F. on the surface. Therefore,
the forces Fp are divided into two parts: static forces
F; and external forces Fe, and accordingly the La-

grangian dynalmcs equatlon can be rewritten as

MC0+DC0+ KCy= F,+ F., 1

where F, is given as:

J f Tdudv.

When an external force f is applied at some con-
trol vertex, we think it is applied on the surface patch
If the control mesh is
subdivided once, the vertex; whose valence is denot-

corresponding to the vertex.

ed by I, is split into / new vertices (see Fig. 1), and
the surface patch is divided into / less patches at the
same time. let each new vertex have a force f, then
we can easily find that the physical systems are equiv-
alent before and after the subdivision step, that is
the force on the limit surface is fixed everywhere in
the subdivision process. In contrast, for a primal sub-
division, a force applied at some vertex should be tak-
en into account for all faces containing the vertex,
which means that the force is applied on all limit sur-
face patches corresponding to these faces. From an-
other point of view, each surface patch depends on all
control vertices within its one-neighborhood in the as-
pect of applying forces. Such complicated relations
betw een the surface patches and control vertices make
it difficult to assign the forces equivalently for the re-
sulting mesh if the control mesh is subdivided. Thus
dual subdivision, considered in this paper is more
convenient to be used in the interactive modeling pro-
cess with both applications of forces and subdivisions
of the meshes.

2.2 Evaluating dynamic parameters

In this subsection, we will present the approach-
es for computing all the dynamic parameters and be-
gin with the mass matrix M. By subdividing the con-
trol mesh several times, we can suppose that the den-
sity of mass ! is constant in each face for the sake of
simpleness, then

=Sl s .

Using the deflnltlon of J ', we can obtain

ﬂl J dudv= EEI} J dudv

k=1 n=1

*zz nV (ET lek

=11 4
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° [ Jﬁ(u, v)bT(u, v)dudv] x>y,
Q

Every element in b (u, v) is a polynomial on €2, thus

(s v)b" (us v)dudy can be computed directly.
a

Let Zk = X:[ Lg(u, vIb' Cuy v )dudv] Xk, and
Q

Qk — 24*11( ET)rlsziﬁl .
n=1
Since ' '= N (n—1)4 "2 U, and Z; is a
symmetrical matrix, we can obtain
0= 0t gt @'+ o
w here

Q;( _ zzlann*leAn*l’

n=1

0= > 4 "N z,(n— D4 "2,

n=1

and
0 =2 4" (n— D& Z,(n— D4 "2y,
n=1

1. . .
Each element of Q@ is a power series, and accordingly
can be obtained im mediately:

(@ =2 "z - m@m.

n=1

Note that
0= 2 (n— 142N Zy
n=1

- dlag(GO, Oly *** GN‘F4)ZkU9
where
6= >, (n— D4 2!
n=1
is obviously a convergent series and can be computed
easily by program, i=0, 1, ---, N+4. Similarly,

0 = UTZkU[z (n—1 )24*3"+ﬂ

n=1

can be calculated. As a result, we obtain
3
ﬂl*TJ*dudv =2 vTov,
k=1

as well as the mass matrix M. Then, the dam ping

d
D=2, Y,»R,»T[ ﬂl”ﬁdudv] R
i=1

can also be obtained if the damping coefficient 7 is

matrix

constant in each face. In the same way, we can ob-
tain the force vector

F.= Zd;RT[ ﬂl *Tdudv]f;F

by.computing each integral

ﬂl *Tdudv
3 oo
=, V*T[z 2 "N 4 (p —1)2*3”‘4UT>]
k=1 Soa=1
° XZ[ LL(u, v)dudv] )
Q

Next, we will investigate how to compute the

stiffness matrix

K :2 Ri[ ﬂx[nJ:TJ:d udv + Jﬁxész%'lllv%d udv
=1
+ jﬁillJuzTJ;du dV + Jﬁille;TJ;dudV
+ jﬁéﬂﬂl;dudv] Ri.

w hich contains the first order or second order deriva-
tives in each integral. Considering the C' continuity
we need to deal with the

derivatives of first order and second order, respective-
ly. For the integrals containing first order deriva-

of Doo-Sabin surfaces,

tives, we assume the coefficients O;j to be constant,

and accordingly we need to evaluate the integrals

ﬂl:"ll:‘dudv and |7 dudv .

.. [69

mulae of derivatives ) :
o

aa

Using the for-

o= 27 b (e G DX ET Y
k

Vk9 n, l.vjv
we can obtain

H’ U dudy = 204 VDTN

k=1 n=1

° [ LL,,( u, v )b:, Cus v)du dv] X2y

Q

If we rewrite 2\ as A= A+ Ay, where
Al - diag(l, O, 09 ) O)

and

1 1 1 1 1 1 1 1
A — s A2 1ir1r i1 11 1
2 dldg[oa 27 29 16’ 87 89 47 4’ ’ 4] ’

and denote the first column of V by vo= (a, a, -+
@', then VA= (a, o, -5 a)', where a= (a, 0,
0, - 0)". Because the sum of elements in each row
of P or A is 1, we have AVA = (a, a, -+, o),
and then PiA VA = (o, a, -, o)'. It is followed
that

8
B Cus MIPAVA, = >, (b(u, v)a" = o,
i—0
SO

bl Cus v)PAVA = %(oﬁ): 0

= bz( u, v)Xi .
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In addition, > '= A+ A;il—’—(nfl)4*n\2 U.

thus we have

:T.Iu*d udv

3 oo
= > >V TN (-4 )
k=1 n=1
Z (N (i—Da v,

w here

Zk/ = Xi[ Ju(u, v)bz(u, v)dudv]Xk.

Let Qk 0 ur Q/c2+(Qk2) JFQk , where
Qk - z ArleArgla

n=1

2= > N Z (14 P
n=1

=D n— 14 ™2z, (n— D4 "2
n=1

then every element of Q;l, Q;/cz and Q;/f is a conver-
gent series, so Q;: can be computed as above. For in-
stance,

0, ifi=0o0rj=0

QD=9 _1 '
1_ )\l)\j (Zk)lja

Then, we have obtained

ﬂJ*TJ dudv —2 vigv!.

Analogously, J J can be calculated.

otherwise.

. 2 )
Note that Doo-Sabin surfaces are not C~ continu-

ous but only C' continuouss and the second order
derivatives may diverge near an extraordinary point,
so we set the characteristic springiness coefficients [3;
to be zero in a very tiny neighborhood of the extraor-
dinary point, similar to Ref.[2], in order to avoid

computing certain integrals for special cases. For ex-

ample, we can set g»(u, v):br(P(u, v ), where
2 2
G vy =10 if Cusv) €10,2 2% %X10,2%,
1,  otherwise,
then

Jﬁi 1JuitTJ:ud udv

3
fzmzzéﬁ” LARCRENCE MR

k=1 n=1

’ Xli[ Juu(u’ v)biu(u, v)dudv]

Q

X (N (D4 P v )

z‘o(tJFAt):

Since Iguu(u, v)b.fu (u, v)dudv can be obtained di-
Q

rectly, we can similarly simplify the right-hand part
of Eq. (2) and then calculate it. i12J:vTJ ;,d udv

and JﬁézJViTJ;du dv can be obtained in the same

way.
JL 7 dudv,

J Tdudv, J;TJ:dudv, jV*TJV*dudv,

Jﬁmj "J, dudv, EDJ;TJ:vdudv, and

J JW JWdudv, can be obtained. Note that these

Therefore,  all  integrals,

integrals only depend on the parameter N, which sel-
dom exceeds 20 in application settings, so we can
compute these integrals in advance with N varying
from 3 to 20, and save them in a file to be loaded at
the beginning of the application. In our experiments
MATLAB is used to fulfill the job. Hence, the dy-
namic parameters M, D, K and F, can be obtained
easily.

3  Numerical techniques in solving the dy-
namics equation

3.1 Solving the dynamics equation using central dif-
ferences

For the Lagrangian dynamics equation, which is
a second order differential equation, we will replace
all derivatives by their discretized approximations first
and then use the iteration method to solve the result-
ing time-varying system. In the previous work, back-
ward differences are used to approximate the deriva-
tives of the time t+2A¢ (see Refs.[2—5] ):
Co(t+A)—2C(H+ C(t—At)
A2 ’
CoCrtAp— Co(z+At)2AtCo(z At)’
and then Co(t+A¢) is obtained by solving the re-
sulting linear equation. However, it is well known

that the central difference is the best approximation to
a derivative, so we will use central differences to dis-
cretize the dynamics equation. In detail,
- Gt +AD)—2C()+ Cot—Ap)
CO( t) - A f2 .

. Gt +AD— Co(t— Ar)
CO(t)* 2At )

and accordingly the dynamics equation MCo(¢) +
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Déo(l)"—KCo(l): F.+ F.(1) can be rewritten as
QM+ DA Co(t+Ap)
= (4M — 20 K) Co(1)
+ (DAt—2M) Co(t — At)
+ 28 F A+ 207 Fo (1), 3

where F, = KCo (0).
Co(—At)= Co(0), and then we can solve the time-

varying system (3) by recursively computing Co ((n
+1)A¢) from the linear equation

QM+ DA Co((n+ DAY
= UM— 202 K)Co(nlp)
+ (DAt —2M) Co( (n— DA+ 208 F.
+ 2877 F.(np), )

according to the known values Co(nlt) and
Co((n—DAL), until Co((nt+DAD= Co(nlt)

approximately or the iterative time has reached the

Initially we assume that

maximal value. Note that the coefficient matrix of
the linear equation (4), i.e. (2M-+ DA¢), is con-
stant in the iterative procedure; so we can solve Eq.
(4) very efficiently with only one time of L.U-decom-
position of the coefficient matrix .

3.2  Local solution for the linear system

It is obvious that all the m vertices are intro-
duced in the linear equation (4), that is, the linear e-
quation has an order of m. For a model containing a
huge quantity of vertices and faces, we accordingly
have to deal with a high-order linear equation with
very high computational cost. On the other hand, the
experiments tell us that one force influences a local re-
gion of the surface visibly but changes the other part
dightly when the deformation of the surface is not too
much. In many cases, only afew forces are applied
on a complicated surface and the change of most part
of the surface can be ignored. Hence we can solve the
linear sy stem approximately by fixing the vertices far
from the action spots of the forces and reducing the
linear equation (4) into a low-order equation.

We regard all vertices in the O rings around the
vertex v as the influence region of a force applied to
v, denoted by Reg(v), where P is an integer. That
iss Reg (v) is defined as

o
Reg (v) = U ring (v, k),
K0
where ring(v, 0)= { v}, and ring(v, k1) denotes

all  yertices  sharing a face with some vertex  in

k
ring (», k) but not belonging to | Jring (v, j), for
=0

any k. If all the n forces are applied to the vertices

vi, v2, -+ and v in the control mesh, respective-

ly, then the total influence region is U Reg(v;),
=1
Then,

we only solve these mg vertices from the linear sys-

which is supposed to be { Vi, V2, - V’”o} .

tem, while fixing all other vertices in the control
mesh, that is, the linear equation (4) has been sim-
plified from m-order to mo-order.

Suppose that Vi, V2, -5 and Vi are the first
mo vertices in Co without loss of generality, then we
divide Co into two blocks:

Co
Co= C(Z) ’
w here C(l): (i, V2, - Vmo)T, and Czo is fixed.
M, D, K, F, and F. are divided into several blocks

accordingly. For example,
K — K1 K->
| K3 K4’
where K is an moX mo matrix. Thus, the linear e-
quation is simplified as
QM1+ DA Co((n + DAL
= UM, — 202 K) Cy(ndp)
+ (DAt —2M) Cy((n— DAY

+202(F.4 Fi(ndo), (5)
w here
F.= F.— K, C, = K, Cy(0).
In other words, in order to solve the linear system
(4) approximately, or find the local solution for sys-
tem (4), we make C(z) fixed and solve C(l) from the
linear system (5) by the iteration method.

4 Experiments and results

Let us glance at a control mesh obtained by sub-
dividing a cube twice, where the set of control ver-
tices of the original cube is

(G ye D xl=lyl=]zI=1}.
forces on the mesh as shown in Fig. 4(a), and solve

We apply four

the dynamics equation (1) using backw ard differences
and central differences, respectively. It is shown in
the experiment that the difference of the two result-
ing control meshes is 0.006443, which is very small.
In fact, we cannot distinguish the two limit surfaces
intuitively (see Fig. 4). However, the central differ-
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ence is still a better choice at a mathematical angle, i.
e. more approximate to the derivative. Certainly, the
deviation of the dy namic models based on two ty pes of
differences grows when the varying rate of Fe(¢) in-
creases then the advantage of central differences can
be clearly seen.

To compare the global method and the local
method for solving the time-varying system, an ex-
periment is performed with an object like a hill, as
shown in Fig. 5(a). Figure 5 (b) shows the de-
formed surface obtained by solving the global linear e-
quation (4), and Fig. 5(c) gives the resulting sur-
face obtained by solving the local equation (5) and
fixing all other vertices, where the influence region is
painted with a dark color. It can be seen that the two
surfaces solved by the linear systems (4) and (5) are
intuitively uniform. In detail, the maximum distance
between the vertices of the control mesh deformed by
system (4) and the corresponding vertices computed
from the system (5) is 0. 003906. That is to say, the
difference between the global solution and the local
solution for the dynamics equation is very small and
usually can be ignored. Moreover, the deformation
time is 13.422s for the global method (m=712) in
contrast to 0.296s for the local method (mo=81). Tt
is obvious that the local method greatly reduces the
computing time and storage, especially for complicat-
ed models with a huge quantity of vertices and faces.
It should be pointed out that open control meshes can
also be introduced in the proposed framew ork without
modifying the deformable model if the influence re-
gions of external forces lie in the interiors of the
meshes. In addition, O is set to be 4 in the experi-
ments, which is large enough in general.

{u) (b) ic)

Fig. 4.

ferences. (a) Initial contol mesh; (b) using backward differences;

Comparison of the resulting surfaces using different dif-

(c) using central differences.

Using the modeling technique proposed above,
we can modify the shapes of Doo-Sabin surfaces very
freely. Some examples of deformable surfaces model-
ing are given in Fig. 6, where Fig. 6(a) and (b) are

k

ia) (h) (&)

Fig. 5.
tial control mesh with one force; (b) the global solution of the dy-

Comparison of the global and local solutions. (a) The ini-

namics equation; (c) the local solution with the influence region

marked by a dark color.

the control polyhedron and the corresponding limit
surface of Doo-Sabin subdivision, respectively, and
Fig. 6(c)—() are the deformed surfaces via applica-
tion of different external forces. For another exam-
ple, the forces of a more complicated distribution are
applied on a cup surface, which is designed with Doo-
Sabin subdivision, and the original surface and the

deformed shape are shown in Fig. 7, respectively.

() thi )

W N

Fig. 6.

(b) the corresponding Doo-Sabin surface; (¢) —(f) deformed sur-

Examples of hat modeling. (a) The control polyhedron;

faces via the applications of different forces.

1) b

Fig. 7. Cup modeling. (a) The cup surface based on Doo-Sabin
subdivision; (b) the deformed surface by applying extermal forces.

5 Conclusions

Deformable subdivision surfaces have many ap-
plications in computer graphics, geometric modeling,
medical imaging and scientific visualization. It is an
intuitive and powerful tool for editing the shapes of
subdivision surfaces. In this paper, we have present-
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ed a deformable model of Doo-Sabin surfaces and ex-
tended the physics-based subdivision surfaces to the
dual setting. In the model, the dynamic parameters
are computed in a unified way for both non-defective
and defective subdivision matrices, without subdivid-
ing the control mesh recursively, and the central dif-
ferences are used to discretize the Lagrangian dynam-
ics equation instead of the backward differences. Af-
ter analyzing the dynamics system, we decompose the
forces applied on the surface into two parts so the
physical background behind the deformable model be-
comes clearer. Further, we give a local scheme to
solve the linear equation approximately, and the order
of the linear equation is greatly reduced. Hence the
computation time is shortened, and the needed stor-
age is also reduced. It is shown in our experiments
that the resulting surface obtained by the local scheme
is almost uniform to the resulting surface obtained by
the global scheme. Using the local scheme, one can
easily introduce open control meshes into the proposed
framework without modifying the deformable model
if no boundary vertices lie in the influence regions of
external forces. Moreover, our deformable dual sub-
division model is more convenient to be handled than
the prior dynamic models in the interactive modeling
process with interlaced steps of applying forces and
subdividing meshes. Therefore, our deformable mod-
el is more efficient than the existing dy namic models.
The experiments demonstrate that the model pro-
posed in the paper can be used to edit the shapes of

subdivision surfaces very efficiently and flexibly.
Other dual subdivision surfaces can be similarly ap-
plied in the proposed framework of deformable sur-
faces modeling.
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